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Abstract—Multisensor anomaly detection plays a crucial
role in several applications, including industrial monitor-
ing, network-intrusion detection, and healthcare monitoring.
However, the task poses significant challenges due to the
presence of massive unlabeled data, the difficulty of iden-
tifying normal patterns in the spatio-temporal data, and the
inherent complexity of defining an anomaly. Moreover, noisy
sensor measurements could potentially result in models erro-
neously detecting noise as an anomaly, and the existence of
different types of anomalies adds to the complexity. Existing
multisensor anomaly detection methods are mostly designed
for labeled datasets and often disregard crucial factors such
as spatio-temporal dependencies, noise presence in training
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data, and the existence of multiple types of anomalies; thus, their applicability is limited. In this article, we propose a

novel framework called multiobjective transformer networks

for anomaly detection (MTAD) that leverages the power of

transformer architectures and optimal truncated singular value decomposition (OT-SVD) for robust unsupervised mul-
tisensor anomaly detection. MTAD comprises a multihead transformer encoder for effective time series representation
learning, a convolutional decoder for reconstruction, and a memory network for predictive analysis. The model processes
denoised (via OT-SVD) input through the network and computes both reconstruction and prediction losses. MTAD jointly
optimizes the modules in an end-to-end mechanism to minimize the combined weighted loss. We compare MTAD with
other state-of-the-art methods using several metrics and demonstrate that our approach outperforms existing solutions.
Furthermore, we conducted an ablation to demonstrate the contribution of each module to the overall performance.

Index Terms— Multiobjective training, multisensor anomaly detection, optimal truncated singular value decomposition

(OT-SVD), transformer encoders, unsupervised learning.

. INTRODUCTION
NOMALY detection in multisensor systems has gained
significant importance across various domains, such as
industrial monitoring [1], [2], network-intrusion detection [3],
[4], wireless sensor networks [5], medical applications [6],
and autonomous vehicles [7]. Multisensor systems generate
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complex, high-dimensional (multivariate) data streams that
capture the temporal evolution of several physical parameters,
potentially enabling anomaly detection and system behavior
prediction. In industrial applications, multisensor anomaly
detection is crucial for health or safety monitoring of industrial
systems such as manufacturing processes, power plants, and
oil refineries. Detecting anomalies can help to identify system
faults, predict equipment failures, and improve overall oper-
ational efficiency. Similarly, in network-intrusion detection,
anomaly detection algorithms can identify unusual network
traffic patterns or user behavior that may indicate a potential
cyber-attack. The continuous collection of massive multi-
sensor data led to the development of several data-driven
machine learning methods for anomaly detection. These tech-
niques are implemented through supervised, semi-supervised,
or unsupervised learning modes [8]. The first two approaches
face several challenges including the limited availability of
labeled data in real-world scenarios. Furthermore, supervised
and semi-supervised approaches are specialized in recognizing
specific anomalies from training data and are likely to fail
to detect new types. Dynamic environments require periodic
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retraining with new labeled data, and data scarcity can lead
to overfitting and limited generalization. As a result of these
challenges, unsupervised anomaly detection techniques are
increasingly gaining importance in multisensor anomaly detec-
tion [9]. These methods utilize unlabeled data, cope well
with imbalanced data problems, detect previously unobserved
anomalies, and effectively adapt to non-static environments
where data distributions are changing.

A. Related Work

Unsupervised anomaly detection methods can be catego-
rized into three groups: 1) conventional methods relying
on classical statistical and/or machine learning algorithms;
2) deep neural network (DNN) methods; and 3) hybrid models
combining approaches from the two previous groups [9].

Conventional methods include autoregressive models [10],
control charts [11], discord search [12], and -clustering
(K-means, DBSCAN, LOF) [13], [14], [15]. Their main
advantages are simplicity and interpretability. However, they
often struggle with high dimensionality and nonlinearities,
thus their effectiveness in complex multisensor environments
is limited.

DNN-based models utilize recurrent neural networks
(RNNs) [16], [17], [18], [19], convolutional neural networks
(CNNs) [20], [21], autoencoders [22], [23], [24], [25], gen-
erative adversarial networks [26], [27], and graph neural
networks [28], [29]. These methods excel at capturing complex
nonlinear interactions and temporal correlations. However,
their main disadvantage is the requirement for large datasets
and high computational resources. Also, they often exhibit
limited interoperability.

Hybrid models combine conventional statistical methods
and machine learning with deep learning for robust anomaly
detection. Examples include long short-term memory networks
with variational autoencoders [30], OmniAnomaly [31], multi-
scale convolutional recurrent encoder—decoder networks [32],
deep autoencoding Gaussian mixture models (DAGMMs) [33],
and adversely trained autoencoders [34]. Hybrid models can
be complex to implement and require careful tuning to achieve
optimal results. These models mostly employ CNNs and RNNs
for spatio-temporal representation learning, though sequential
input makes RNNSs training slow and long-term representations
are challenged by vanishing-gradient problems. Transformer
models [35] are capable of dealing effectively with both
issues via multihead self-attention mechanisms that enable
parallel sequence processing and have become state-of-the-
art for sequential modeling of multisensor time series. As a
result, several transformer-based models have been proposed
for anomaly detection [36], [37], [38], [39], [40], [41], [42],
[43], [44].

B. Challenges and Paper Contribution
Although several unsupervised multisensor anomaly detec-
tion algorithms have been proposed over the years, significant
challenges are still relevant and require improved approaches.
1) Detection of Multiple Types of Anomalies: Anomalies in
sensor measurements can be point, contextual, or sub-sequence

(collective) anomalies. Point anomalies occur when a single
sensor measurement significantly deviates from the rest, often
due to unreliable sensors or localized operational issues.
Contextual anomalies involve unusual measurements within a
specific context. Collective anomalies involve sub-sequences
of sensor measurements behaving differently, making detection
difficult for conventional methods. Existing methods often
identify a single type of anomaly, thus limiting their broad
applicability.

2) Noise Removal From Normal Training Data: In many real-
world scenarios, sensor measurements are inherently noisy,
leading to a higher rate of false positives (FPs) where noise is
mistaken for anomalies. Noise can distort the actual underlying
structure of the data, making it difficult for unsupervised
algorithms to model normal behavior accurately. Noise in
multisensor anomaly detection is often overlooked.

3) Spatio-Temporal — Correlation: ~ Spatio-temporal  data
involves both temporal (recorded over time) and spatial
(recorded across different sensors or locations) correlation
(or more generally, nonlinear dependencies). Since anomalies
frequently display unique patterns among multiple sensor
measurements, identifying these correlations is crucial.

However, several approaches treat sensor readings indepen-
dently, which significantly reduces their effectiveness.

4) Multiple Anomaly Scoring and End-to-End Training: Mul-
tiple anomaly scoring allows the detection of different types
of anomalies that a single scoring approach might miss.
Implementing an end-to-end training approach with multiple
scoring methods simplifies the training process, avoids local
optima, and enhances performance. However, most of the
algorithms are based on single anomaly scoring and disjoint
training, which compromises the performance of the models.

To address the aforementioned issues, we propose a novel
framework named multiobjective transformer networks for
unsupervised multisensor anomaly detection (MTAD). The
proposed method processes the noisy input using a denoising
approach based on singular value decomposition (SVD) analy-
sis and combines two networks focusing on reconstruction and
prediction, respectively. The framework jointly optimizes the
networks in an end-to-end approach with the goal of minimiz-
ing the combined reconstruction loss and prediction loss. This
comprehensive training strategy improves the performance of
the anomaly detection model, addressing issues that often limit
other methods.

Specifically, our contribution is summarized as follows.

1) We proposed a novel modular framework called MTAD
that employs an encoder—decoder-memory network
designed to identify multiple types of anomalies in
sensor measurements effectively. MTAD incorporates a
reconstruction network for detecting point anomalies and
a predictive memory network for detecting sub-sequence
anomalies.

2) We designed MTAD to effectively handle noisy sen-
sor measurements by using optimal truncated SVD
(OT-SVD).

3) The proposed framework employs a multihead
self-attention network to manage spatio-temporal
correlations between sensors effectively, thereby
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improving its ability to detect anomalies that display
irregular patterns.

4) The MTAD framework merges multiple anomaly scoring
techniques in an end-to-end training procedure for robust
anomaly detection.

5) We performed an extensive performance comparison
with several other state-of-the-art methods using various
publicly available datasets.

The rest of the article is structured as follows: Section II
describes the proposed model and the mathematical tools
behind its design; Section III presents the experimental setup
and the datasets; while Section IV illustrates the performance
analysis and related discussion; finally, conclusions and future
research directions are given in Section V.

Il. PROPOSED METHOD

In this section, we present the problem statement and
provide a detailed description of the MTAD architecture,
along with the mathematical theory of OT-SVD. Furthermore,
we present combined scoring and end-to-end optimization
approaches employed by MTAD. Finally, we describe the
training and inference algorithms for implementing the MTAD
model.

A. Problem Statement

We consider a system with S sensors and denote x[n] €
R the measurement of the kth sensor at discrete time n.
The measurement vector x[n] = (x1[n], x2[n], ..., xs[n)T €
RS collects all the measurements at discrete time n, and
the entire set of measurement vectors related to N discrete
times steps is arranged into the measurement matrix X =
(x[11, x[2], ..., x[N]) € RS*V,

In the context of unsupervised methods, we assume that
a training measurement matrix (Xy,in) 1S available and is
representative of the system behavior under normal conditions.
The training process aims to create an accurate representation
G(-) that captures the normal behavior of the system. For
performance evaluation, a testing measurement matrix (X €
R5*M) with M < N is available. The testing measurement
matrix includes data related to both normal and anomalous
conditions. Additionally, we assume that side information
(labels) for the testing measurement matrix is available in the
form of the label vector y = (y1, y2, ..., yu)', with y,, =1
(resp. y» = 0) denoting the presence (resp. absence) of an
anomaly at discrete time m. The objective of the model is to
find a representation such that y = F (X ) closely resembles
the vector y according to a predefined metric.

B. Architecture Overview

The proposed framework introduces a novel and modular
twofold architecture based on prediction and reconstruction
tasks, addressing the challenges of unsupervised anomaly
detection in multisensor systems. The MTAD architecture is
depicted in Fig. 1 and consists of four key components: 1) a
stack of transformer encoders for capturing spatio-temporal
patterns; 2) a convolutional decoder for the reconstruction
task; 3) a prediction network for the predictive task; and
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Fig. 2. Input structure.

4) a fusion-based detector for anomaly detection combining
the anomaly scores from both reconstruction and prediction
tasks. With reference to the generic measurement x;[n], three
different estimates are produced within the architecture: 1) by
the convolutional decoder, denoted x,[n]; 2) by the prediction
network, denoted X,[n]; and 3) by the OT-SVD block, denoted
Xr[n]. Estimated measurement and vector and matrices are
then denoted accordingly.

The system operates on the basis of a sliding-window
mechanism collecting sensor measurements. We denote X, =
(x[n],x[n —1],...,x[n — L 4+ 1]) € RS*L the system input
at discrete time n, where L represents the window size. The
structure of the input and the window is shown in Fig. 2. The
input X, undergoes the following processing steps within the
MTAD framework.

1) The transformer encoders generate a latent repre-
sentation Z,, capturing the underlying patterns and
dependencies in the input data.

2) The latent representation Z,, is fed into the convolutional
decoder, which produces an estimated version of the
system input, denoted as X, € RS*L.

3) The prediction network utilizes the latent representation
Z, to generate a one-step-ahead prediction of the mea-
surement vector, denoted as X, € RS*T,

4) Partial anomaly scores for both reconstruction and pre-
diction tasks are computed and combined into the global
anomaly score.

The proposed system is trained with reference to the archi-
tecture shown in Fig. 3. The design of MTAD is motivated
by the concept of denoising autoencoders. However, unlike
traditional denoising autoencoders that intentionally add noise
to the noiseless input data, MTAD assumes that the sensor
measurements inherently contain noise. A denoising block is
introduced to build a reference signal from the system input.
More specifically, during the training procedure, the sensor
measurements are processed via an OT-SVD block to produce
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Fig. 3. MTAD training architecture.

reference signals for the reconstruction and prediction tasks,
denoted X,, € RSL and ¥, € RS*!, respectively.

MTAD is basically composed of two networks operating
together, and the total loss (L) is calculated as a linear
combination of their individual losses (Lrec and Lpyrq); thus,
the proposed system can optimize and trade-off reconstruction
accuracy and prediction accuracy, facilitating the detection
of different types of anomalies in sensor measurements. The
reconstruction loss L. and the prediction loss Lpyeq are
computed using the reference signals for the reconstruction
X, and for the prediction X,.|, respectively, paired with
the corresponding outputs from the convolutional decoder
and prediction network. These losses are linearly combined
(¢ and B denote the weights) to improve the model’s ability
to reconstruct the input data accurately and make reliable
predictions. This fusion strategy allows MTAD to inherit
the strengths of transformer-based representation learning,
denoising techniques, and multinetwork loss computation,
thus offering a robust and effective solution for unsupervised
anomaly detection in multisensor systems.

C. Description of the Individual Blocks

1) Transformer Encoders: The first block plays a crucial
role in the proposed framework by capturing the intricate
spatio-temporal patterns in multisensor data. As shown in
Fig. 4, it consists of a stack of Ly transformer-encoder
modules (we denote 7 (-) the mathematical operator repre-
senting the individual transformer encoder), each composed
of multihead self-attention mechanism, position-wise feed-
forward networks, and normalization layers with residual
connections. In contrast to recurrent networks, transformer
networks process the inputs in parallel, resulting in loss
of sequential information, thus positional encoding, via use
of a positional encoding matrix P matrix, is required to
avoid it [35]. We define the query, key, and value matrices
as @, = (X, + P)Wq,;, K; = (X, + P)Wxg,;, and
V. = (X, + P)Wy,, respectively, where Wq; € RS*S/H)
Wg; € RS*G/H) and Wy, € R5*S contain the learned
weights for the ith attention head, and H denotes the number
of heads. It is worth noticing that the model dimension and
the value dimension equal the number of sensors (S). Then,
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Fig. 4. Transformer encoders.

an attention score (A;) is computed for each head according to
the standard procedure based on matrix multiplication, scaling,
and column-wise Softmax normalization (details are found
in [35]).

In the multihead attention mechanism, multiple scaled-dot
attention operations are employed in parallel by splitting the
projected vectors into different heads. This enables the model
to focus on different positions in the input sequence simulta-
neously, capturing different aspects of the input sequence: the
model learns separate weight matrices for each attention head.
The outputs from all attention heads are then concatenated
and linearly transformed to give the output of the multihead
attention layer

A = Concat(Ay,...,Ag)Wqo D

where W € R75%5 is the output projection weight matrix.

The output of the multihead self-attention mechanism is
added to the initial input and then processed through the
normalization layer. Then, a position-wise feed-forward neural
network (FFNN) is applied to capture complex nonlinear
behavior and finally an analogous block with input addition
plus normalization layer is employed. The normalization layer
helps with stability during the learning process by normalizing
the inputs across the features instead of across the batch and
reducing the co-variate shift problem.

The relation between the input sequence (X,) and the
output sequence (Z,) in a block with Ly transformer-encoder
modules may be represented as

Z,=TY (X, + P). (2)
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2) Convolutional Decoder: The convolutional decoder in
the MTAD framework is designed to reconstruct the input
sequence from the latent feature representation produced
by the stack of transformer-encoder modules. The decoder
employs a 1-D convolutional network to perform this
reconstruction (we denote C(-) the mathematical operator rep-
resenting the 1-D convolutional network). The filters traverse
in one direction on the latent matrix (Z,), performing a
convolution operation to produce the reconstructed sequence
(f(n), that is,

X, =C(Z,). (3)

Through this process, the decoder utilizes reconstruction
error to detect point anomalies from the multisensor measure-
ment.

3) Predictive Network: The predictive network in the MTAD
framework is designed to predict the future values of the sensor
measurements based on the latent feature representation gen-
erated by the stack of transformer-encoder modules. It consists
of a feed-forward network with sigmoid activation (we denote
JF(-) the mathematical operator representing the feed-forward
network). More specifically, the predictive network predicts a
vector one time step into the future (¥[n + 1]) by applying a
linear transformation to the latent representation (Z,), that is,

x[n+11=F(Zy). “4)

The key capability of the predictive network lies in its ability
to detect point anomalies and sub-sequence anomalies (the
latter being common in multisensor measurements). This dual
detection capability significantly improves the performance.
When paired with the reconstruction decoder, the predic-
tive network provides a robust mechanism for unsupervised
anomaly detection in multisensor data.

4) OT-SVD: To mitigate the impact of noise on anomaly
detection, MTAD employs OT-SVD as a denoising technique
during the training stage. OT-SVD improves anomaly detection
accuracy by helping the MTAD architecture to distinguish
actual anomalies from noise-induced variations in the sensor
measurements. OT-SVD relies on classical SVD of the matrix
(X), that is,

min(S,L)
X=UzV'= > ocuv] (5)
i=1

where U € R5*S and V e RE*E are orthogonal matrices,
that is, UTU = Is and VIV = I,, and £ € R5*L is a
non-negative diagonal matrix. The columns of U, denoted
u;, are the left singular vectors of X and correspond to
the eigenvectors of XX T The columns of V7, denoted vl.T,
are the right singular vectors of X and correspond to the
eigenvectors of X7 X. The diagonal elements of X, denoted
o;, are the singular values and represent the square roots of the
eigenvalues of X7 X or XX, arranged in descending order
(i, 01 > 02 > -+ > Omines,1))-

In multisensor systems, it is common to observe dependen-
cies among measurements from different sensors (e.g., due to
physical proximity, shared environmental conditions, or inter-
actions within the monitored system). Consequently, it is

realistic to assume that signals captured by the sensors exhibit
low-order structures, which translate into rank deficiency of
the input data matrices. As a result, low-rank approximation
appears to be an appealing strategy for data representation.
We consider the TSVD estimator (also known as partial SVD).
According to the Eckart—Young—-Mirsky (EYM) theorem [45],
the optimal rank-r approximation (X ) that minimizes the
Frobenius norm is obtained by retaining only the first r
singular values and their associated singular vectors of the
original matrix (X), thus

< . 52
X = argmin [ X — X (6)
X: rank(X)<r

= Za,-uiviT = f](r)f:(r)f/(Tr) (7)

i=1

where U, and V, denote the first  columns of U and V,
and X, contains the leading r x r sub-block of X.

Selecting the proper rank (r) is a relevant problem which
can be handled with simple approaches such as selecting the
elbow on the scree plot of the singular values (in decreasing
order) or more advanced methods based on cross-validation
techniques or information-theoretic criteria. We consider an
information-theoretic approach exploiting random matrix the-
ory [46], [47]. A threshold-dependent rank is introduced

r(t) = max{i : o; > 1} ®)

with T > 0, then the optimal threshold (t*) is found by
minimizing the asymptotic' MSE between the original matrix
and the approximation in (7), that is,

r* = argmin lim E[HX — X(,)ni]. 9)
T S—>o0

Under the assumption that the measurements are affected by
additive white Gaussian noise, the optimal threshold (7%) is
given by

" = ©(p)Omed (10)
where opyeq is the median singular value, and w(p) is computed
as

2.858, S=1L
w(p) ~ [

S2L (11)

0.560% — 0.950% + 1.82p + 1.43,

being p = min{S, L}/ max{S, L}.

5) Fusion-Based Detector: MTAD computes the anomaly
score as the sum of the prediction error and the reconstruction
error. Both errors are measured using the £,-norm or Euclidean
distance. The anomaly score (s,) at the generic time step for
a given test data point (x[n]) is given by

sn = agllx[n] — X[nlll, + Bllx[n] — x[n]ll, (12)
where a; and B; determine the contribution of the individual
scores in the testing phase.

'With respect to the dimension S, representing here the number of sensors.
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D. Loss Functions and Joint Optimization Algorithm 1 MTAD Training Algorithm
MTAD employs two networks for loss computation: a Input: Normal Training Dataset X = (x[1], x[2], ..., x[N]),

reconstruction network and a latent prediction network. These
networks are trained in an end-end-to-end mechanism, with the
total loss being computed as a linear combination of their indi-
vidual outputs to simultaneously optimize the accuracy of both
reconstruction and prediction, thereby enhancing the ability to
detect different types of anomalies in sensor measurements.

The reconstruction network computes the loss as the MSE
between the low-rank OT-SVD denoised matrix sequences
(X, = F[nl,%n+1),...,%n + L — 1])) and the recon-
structed sequences (X, = (&[n],£[n +11,...,%[n+L—1]).
The loss function for the reconstruction network for a single
sequence is computed as’

S L-1

Lrec = ZZ Faln — €] = &uln — 1),

klZO

13)

The reconstruction network aims at reconstructing accurately
normal data samples, with anomalous samples resulting in
larger reconstruction errors.

The latent prediction network employs the transformer
encoder and the predictive network to predict future values
for each sliding window in an autoregressive manner. The
loss is calculated as the MSE between the low-rank OT-SVD
denoised vector (¥,,1) and the predicted vector (¥,.;) as
follows:

s
pred—52xkn+ D—fdn+10)% (4
The overall loss function in the MTAD approach lin-

early combines the reconstruction and prediction losses (with
weights o and 8 controlling the contribution of each loss term)

L =0aLlc+ PBLprea- (15)

The training procedure updates the overall loss function via
back-propagation using batch size of B. The complete pro-
cedure for training the MTAD architecture is summarized in
Algorithm 1.

E. Inference and Anomaly Detection

Anomaly detection (y,,) is done based on a threshold-based
rule applied to the anomaly score (s,,), that is,

A _ 17 Sl‘ﬂ > )\*
Ym = 0, s, <X\

where the threshold (A\*) can be selected according to various
strategies. The inference procedure for the MTAD architecture
is summarized in Algorithm 2.

(16)

I1l. EXPERIMENTAL SETUP
In this section, we provide descriptions of the datasets
with the related pre-processing methods. Also, we present
the evaluation metrics, the baseline methods, the training
hyperparameters, and various implementation details.

2This computation is performed in total for (N/L) number of sequences
from the training data.

window size (L), number of epochs (e), batch size (M),
number of batches (b), number of transformer blocks
(L7), key dimension (d;), number of heads (%), forward
dimension (ds), hyperparameters (c, B, €, Ir)

Output: Trained MTAD model parameters (Transformer
encoder (7y), Decoder (Cy), Memory (Fy))
Data Pre-processing, resampling, scaling.

: Ty, Cw, Fyw < initialize model parameters

1

2

3 k<1

4: repeat

5: for j < 1tob=N/B do

6 Z,=T(X,+P) > Eq. 2
7 X, =C(Z,) > Eq. 3
8 x[n+11=F(Z,) > Eq. 4
9: U,X,V«<SVD(X,) > Eq. 5
10: Omed < median(diag(X))

11: if L > S then

12: o< L/S

13: else

14: p < S/L

15: end if

16: if L = S then

17: T* < 2.8580med

18: else

19: % = w(P)Omed > Eq. 10
20: end if
21: r(t) < max{i : 0; > 1%} > Eq. 8
22: X, < > vl > Eq. 7
23: Ljwe < MSE(X,, X,) > Eq. 13
24: L;ored < MSE(xX[n+ 11, x[n + 1]) > Eq. 14
25: L <~ a[/j,rec + ﬂﬁj,pred > Eq. 15
26: T, Co, Fow < Ty, Cy, Fy — VL
27: end for

28: k<—k+1
29: until k = e

A. Datasets

We evaluate the performance of the proposed framework
using three publicly available real-world multisensor datasets.

1) Secure Water Treatment (SWaT) Dataset [48], [49]: It
is collected from a testbed that simulates the physi-
cal process and control system of a real-world water
treatment system. The dataset features diverse network
traffic, sensor, and actuator measurements. It includes
11 days of continuous operation data (seven days of
normal operation and four days under both normal and
attack scenarios).

2) Water Distribution (WADI) Dataset [50]: 1t is collected
from a testbed that expands upon the SWaT system,
forming a comprehensive and realistic network for water
treatment, storage, and distribution. It includes 16 days
of data (14 days of normal operation and two days under
attack scenarios).

3) Server Machine Dataset (SMD) [31]: It contains server
metrics collected from a large Internet company. The
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Algorithm 2 MTAD Inference Algorithm

Input: Test dataset containing normal and anomaly data: X =
(x[11, x[2], ..., x[M]), window size (L), True labels: y =
1, ¥2, - .., yu)T, Threshold (\*),

Output: Predicted Labels: y = (31, 92, ...
AUC, AUPR

,9m) T, Fl-score,

1: Data Pre-processing, resampling, scaling.

2: for m <~ 1to M do

3: Xn < C(T(X,)

4: Xn < F(T (X))

5: Sm < Q|| X _-i—'m||2+ﬂs”xm —fm”z > Eq. 12

6: if 5,, > \* then

7: VYm < 1

8: else

9: Y <0

10: end if > Eq. 16

11: end for
dataset consists of 38 entities representing different
operations of the servers. For our performance analysis,
we used two entities (SMD-1 and SMD-2) of the dataset.
It includes data from five weeks with a 1-min sampling
frequency (both normal operational data and data under
various anomaly scenarios).

4) Soil Moisture Active Passive (SMAP) Satellite

Dataset [51]: It is a labeled MTS dataset from
NASA, and it is used for detecting anomalies in
soil moisture levels. It comprises 55 entities with
25 monitoring metrics. For our analysis, we considered
eight entities from the dataset.

Table I presents a summary of the attributes and statistics of
each dataset.

B. Data Pre-Processing and Tools

We apply some pre-processing steps as downsampling and
feature normalization before the time series are processed
according to the proposed framework.

We perform downsampling using a median filter with a
1-min window size and no overlap, as in [34], for both training
and test data. Labels for the downsampled test data are built
such that a sample is declared anomalous if the corresponding
window contains at least one anomaly, otherwise labeled as
normal. Downsampling both accelerates the training process
of the neural networks and denoises the normal training data.

As for feature normalization, we employed min-max scaling
to ensure stable model training

X = f B gmin (17)

Smax - smin
where & (resp. x) represents the actual (resp. scaled) measure-
ment, while &, and &, are the minimum and maximum
measured values in the training set, respectively.

We utilized both the PyTorch and TensorFlow deep-learning
frameworks for model training and evaluation. Additionally,
the scikit-learn machine learning library was used for data pre-
processing. All models were trained in the Google Colab Pro
environment using NVIDIA T4 Tensor Core GPU processors.

TABLE |
SUMMARY OF DATASETS

Datasets

Attributes
SWaT WADI SMD-1 SMD-2  SMAP
Entities 1 1 1/28 2/28 8/55
No. of channels 51 123 38 38 25
Average Train size 495,000 1,209,601 25,300 23,693 135183
Average Test size 449,919 172,801 25,301 23,694 427617
Anomaly rate 12.140% 5.99% 421% 4.93% 13.13%

C. Baseline Methods

To evaluate the performance of the proposed method,
we selected the following state-of-the-art conventional and
deep-learning anomaly detection methods.

1) Isolation forest (IF) [52], that is, an unsupervised

anomaly detection algorithm based on decision trees.

2) One-class support vector machines (OC-SVMs) [53],
that is, a method for anomaly detection building one
hypersphere around normal data points.

3) Multilayer perceptron autoencoder (MLP-AE) [22],
that is, a deep-learning method using a feed-forward
encoder—decoder neural network to reconstruct normal
data and identifying anomalies based on the reconstruc-
tion error.

4) Gated recurrent unit (GRU) [54], that is, an RNN
learning sequential patterns and detecting anomalies by
using the prediction error.

5) Convolutional LSTM (ConvLSTM) [32], [55], that is,
a hybrid neural network combining convolutional and
LSTM layers to capture spatial and temporal patterns
for anomaly detection;

6) UnSupervised anomaly detection (USAD) [34], that is,
a method based on adversarially trained autoencoders.

7) DAGMM [33], that is, a deep-learning architecture made
of a compression network and an estimation network.

8) Multivariate anomaly detection strategy with GAN
(MAD-GAN) [29], that is, an unsupervised method
that uses a generative adversarial network (GAN) to
learn the underlying normal data distribution and detect
anomalies based on the difference between the real data
and the generated data (LSTM used as generator and
discriminator to handle time-series data).

Moreover, we include the following MTAD variants as
baselines to justify the importance of each component in the
framework.

1) MTAD-P: The reconstruction network is ignored, and
only the prediction error is used as an anomaly score,
that is, oy = a = 0.

2) MTAD-R: The latent prediction network is ignored, and
only the reconstruction error is used as an anomaly
score, that is, §;, = 8 = 0.

3) MTAD-W: The OT-SVD block is removed, and the
reconstruction and latent prediction networks employ the
actual noisy matrix as signal reference.

D. Implementation Details

We implement the selected baseline methods using
open-source repositories and our own implementations. The
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TABLE Il
MTAD IMPLEMENTATION DETAILS
Datasets
Hyperparameters
SwaT WADI SMD-1 SMD-2 SMAP
Lt 1 1 1 2 1
H 2 8 4 8 2

conventional IF and OC-SVM methods are implemented using
the open-source PyOD python package [56]. IF employs a
100-tree ensemble as its estimator, with each tree performing
splits at a single node using a single feature. For OC-SVM,
we utilize a polynomial kernel with a degree of 5. The MLP-
AE consists of a three-layer encoder and a three-layer decoder.
The input channels are reduced to a 16-D latent space vector,
and the model is trained to minimize the mean square loss
for 100 epochs. For predictive GRU and ConvLSTM deep-
learning models, a look-back of 120 observations is utilized
to predict one-step ahead. Both GRU and ConvLSTM archi-
tectures comprise three layers of stacked cells, each containing
64 neurons. For ConvLSTM, two sub-sequences of 60x steps
are created to apply convolution before feeding the result
into LSTM cells. The USAD method is implemented with
default hyperparameters. The model architecture comprises
one encoder and two decoders, where each module consists of
three linear layers with rectified linear unit (ReLU) activation
functions in between and a sigmoid activation function for the
final layer. The compression network for DAGMM model uses
four-layer encoder and decoder with a 10-D latent space and
hyperbolic tangent activation function. The estimation network
uses a GMM with four mixture components for determining
likelihood. MAD-GAN uses an LSTM network with a depth
of 3 and 100 hidden units for the generator, and a simpler
LSTM network with 100 hidden units and depth 1 for the
discriminator. The dimension of the latent space is 15.

For our proposed MTAD framework, we utilized Tensorflow
KerasTuner [57] for hyperparameters tuning. The model is
trained using the Adam optimizer with a learning rate of
0.01 and a batch size of 64. The number of epochs for training
is set based on the convergence of the loss function. During
back-propagation, we employ mini-batch gradient descent with
the adaptive moment estimation (ADAM) optimizer [58],
using a learning rate of 107>, To prevent overfitting, an early
stopping criterion is set using a validation split of 5%. In the
hidden layers, we utilize the ReLU as the activation function,
while the output layer of reconstruction and prediction network
employs a Sigmoid function. MTAD implementation details
are given in Table II.

E. Evaluation Metrics

In our performance evaluations, we approach the anomaly
detection problem as a binary classification task using labeled
test datasets. We study the behavior of the various methods
under various common metrics relying on the number of
correctly detected anomalies [i.e., true positives (TPs)], the
number of erroneously detected anomalies (i.e., FPs or false
alarms), the number of correctly identified normal samples
[i.e., true negatives (TNs)], and the number of erroneously

identified normal samples [i.e., false negatives (FNs)]. More
specifically, we define the TP rate (TPR) and the FP rate (FPR)
as

TPR=———, FPR=—— (18)
TP +FN FP + TN
while precision (P), recall (R), and F'1-score (F}) as
TP 2-P-R
P=——, R=TPR, F; = . (19
TP + FP P+R
The receiver operating characteristic (ROC) and the

precision—recall (PR) curves (namely the curves describing
TPR-vs.-FPR and P-vs.-R, respectively) offer a complete view
for performance comparison of different approaches, while the
corresponding area bounded by those curves [namely the area
under the ROC curve (AUC) and the area under the PR curve
(AUPR)] is considered as a relevant synthetic indicator for
performance assessment.

Due to the unbalanced nature of anomaly detection problem
(the number of anomalous samples is significantly smaller
than the number of normal samples), we specifically consider
F, and AUPR as preferable performance indicators.

IV. RESULTS AND DISCUSSION/ANALYSIS

A. Overall Performance

The performance analysis of MTAD and selected baselines
from state-of-the-art methods, as applied to the considered
datasets, is presented in Table III. The values of the F1-score
correspond to the following choice for the threshold:
where i, = (1/N)SY /s, and 62 = (/NN (50 —
,&X)Z represent the maximum-likelihood estimates of the mean
anomaly score and related variance computed from the training
set. It is apparent how the proposed MTAD method outper-
forms all other considered methods, indicating that it best
balances precision and recall. This behavior is also confirmed
in Fig. 5, which shows the ROC performance of the various
considered approaches.

B. Combined Network Performance

We investigate how changing the balance between the
reconstruction and the prediction errors (via the weights «
and B, respectively) in the MTAD architecture affects its
performance. More specifically, performance with different
combinations of the weights on the SWaT dataset is presented
in Fig. 6. It is worth noticing that these results include also
the comparison with the two variants MTAD-P and MTAD-R
(corresponding to the combinations (@ = 0, § = 1) and
(¢ =1, B = 0), respectively). Results according to different
performance metrics confirm that a proper balance between
reconstruction and prediction capabilities provides additional
benefits with respect to focusing on reconstruction alone or
prediction alone.
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TABLE IlI
RESULTS ON SWAT, WADI, SMD, AND SMAP DATASETS
Method SWaT WADI SMD-1 SMD-2 SMAP
ethods
F AUC  AUPR P AUC  AUPR F AUC  AUPR I AUC  AUPR F AUC  AUPR
IF 0.3502  0.8426 0.7577 0.0554  0.7080 0.0987 0.1178  0.8379 0.0547 0.3448  0.8439 0.5623 0.5401  0.7216 0.3833
OC-SVM 0.2932  0.8216 0.7358 0.0965  0.7023 0.1554 0.0857  0.8176 0.2617 0.4083  0.8931 0.8278 0.5059  0.6615 0.6645
MLP-AE 0.3120  0.8263 0.7289 0.0994  0.6708 0.0867 0.0102  0.8425 0.4207 0.3046  0.8879 0.7398 0.5037  0.8495 0.7009
GRU 03115 0.8312 0.7403 0.0959  0.6701 0.1191 0.0101  0.8676 0.3818 0.3006  0.9129 0.8837 0.5220  0.8500 0.7039
ConvLSTM | 0.2849  0.8435 0.7397 0.0886  0.7041 0.2219 0.0092  0.9075 0.5396 0.2979 09174  0.8840 0.4803  0.8012 0.6740
USAD 0.3256  0.8046 0.7031 0.1103  0.6763 0.1196 0.1036  0.8387 0.3238 0.4709  0.9103 0.8787 0.4542  0.8659 0.7162
DAGMM 0.3253  0.8017 0.6917 0.1569  0.7033 0.1359 0.0857  0.8352 0.3692 0.3854  0.9149 0.8968 0.4127  0.8682 0.7194
MAD-GAN | 0.3277  0.7205 0.2518 0.0719  0.5899 0.0484 0.0660  0.5448 0.0218 0.0080  0.6760  0.2308 0.4798  0.8701 0.7188
MTAD 0.6269  0.9166 0.8555 0.1820 0.8313  0.1766 0.1429  0.9735 0.5641 0.8178  0.9429  0.8806 0.6307 0.8778 0.7325
SWAT ROC WADI ROC SMD-1 ROC SMD-2 ROC
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Fig. 5. Performance comparison in terms of ROC curves. (a) SWaT. (b) WADI. (c) SMD-1. (d) SMD-2.
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Fig. 6. Performance for different reconstruction and prediction coeffi-

cients on the SWaT dataset. (a) F7-score, AUC, and AUPR. (b) ROC
curves.

C. Parameter Sensitivity Analysis

We examine sensitivity of the MTAD architecture to dif-
ferent parameters: the window size (L), the number of
transformer encoders (L7), and the number of heads (H). The
results are shown in Fig. 7, where the default configuration for
the fixed parameters is L =200, Ly =1, H = 2.

As for the window size, we performed experiments with
L € {50,250} and noticed a general improvement of the per-
formance metrics with the window-size increasing. However,
it is also apparent that a large-size window is also paired with
a large computational cost.

As for the number of transformer encoders, we performed
experiments with Ly € {1,4} and noticed a non-monotonic
relation with the performance metric, indicating that a
more-complex model does not necessarily provide beneficial
effects and might introduce overfitting.

H € {2,32} and noticed a non-monotonic behavior of the
performance metric, suggesting similar considerations to the
case with the number of transformer encoders.

This results suggest that hyperparameter optimization is not
trivial for the MTAD architecture and should be carefully
addressed. However, this issue is beyond the scope of this
article.

D. OT-SVHT Analysis

Fig. 8 shows the scree plots for the application of OT-SVHT
to multiple windows with size L = 200 on the SWaT dataset.

The estimated rank ranges between 19 and 25 (where
the overall number of sensors is 51); thus, although the
measurement noise causes the sensor measurements to have
full rank, it is apparent that the sensor measurements are highly
correlated. The threshold for cutting the singular values ranges
between 0.0114 and 0.2799. The variations in the selected rank
(or related optimal singular value cutoff point) suggest that
different windows experience different noise levels.

E. Ablation Study

The ablation study compares the MTAD full architec-
ture and its variant MTAD-W, which omits the OT-SVD
mechanism. The comparison is summarized in Fig. 9, which
apparently clarifies the relevance of the denoising approach
introduced with the use of the OT-SVD.

F. Computational Complexity

The overall computational complexity of the proposed
model is determined by several operations performed across
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its modules. The OT-SVD process is performed pre-training,
and hence it is not considered for model complexity analysis.
The most computationally intensive operations arise from
the encoder due to attention mechanisms. The computational
complexity of each multihead attention layer is O(L? - S).
The FFNN within transformers add additional complexity,
typically O(L - §?), depending on the inner dimension. The
total computational complexity scales with the number of
transformer blocks (L7). The decoder employs 1-D convolu-
tional layers, focusing on reconstructing the input sequence or
generating new sequences based on encoded representations.
The complexity of convolutional layers is O(k-L-S?), where k

TABLE IV

COMPARISON OF TRAINING AND INFERENCE
TIMES ON SMAP DATASET

Model Average Train time (sec)  Average Test time (sec)
IF 0.3591 0.1560
0OC-SVM 0.2847 0.4085
MLP-AE 8.6163 0.6625
GRU 27.4611 2.2350
ConvLSTM 23.3036 1.5864
USAD 81.0371 4.4837
DAGMM 69.3916 3.2364
MAD-GAN 80.4999 2.2768
MTAD 24.067 0.9908

is the kernel size. The predictor is an FFNN, and its complexity
primarily depends on the number of layers, the number of
neurons in each layer, and the operations performed at each
neuron. The complexity is the product of the number of
neurons in the current layer n; and the number of neurons
in the previous layer n;_;, plus the bias term for each neuron
in the current layer, that is, O(n;_; -n;+n;). Table IV presents
a comparative analysis of training and inference times of the
proposed model and baseline models, with MTAD exhibiting a
notable reduction in inference and training time in comparison
to alternative methods.

More specifically, we stress that the complexity is poly-
nomial both with respect to the number of sensors and the
length of the sequence, thus posing no critical issue related
to scalability when dealing with large-scale multisensor data
in real-world applications. Optimizations such as reducing
sequence length, dimensionality reduction techniques, or effi-
cient attention mechanisms can help manage model efficiency
and scalability.

V. CONCLUSION

The proposed MTAD architecture is a novel framework
designed to effectively detect multiple types of anomalies in
sensor measurements. It combines a reconstruction network
and a latent prediction network focusing on point anomaly
detection and sub-sequence anomaly detection, respectively.
Also, MTAD addresses the challenge of noisy sensor
measurements by utilizing OT-SVD, while spatio-temporal
dependencies between sensors are exploited via a multihead
self-attention network. In addition, the MTAD framework
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combines multiple anomaly scoring techniques into an end-
to-end training procedure. This integration ensures robust
anomaly detection by leveraging the strengths of different
scoring methods. In general, the proposed MTAD framework
combines different advantages of several approaches resulting
in a very effective approach for anomaly detection in multi-
variate time series from sensor measurements.
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